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Introduction

We have previously reported on the incorporation of a circular boundary
condition into the program POISSON for two—dimensional problems ("Incorpora—
tion of a Circular Boundary Condition into the Program POISSON", S. Caspi,
M. Helm, and L.J. Laslett, LBID-887, SSC MAG Note-5, February 13, 1984).
The least square method has now been generalized to accept any suitable set
of orthogonal functions which can describe the vector potential function
outside a circular boundary so located that no external sources are pre—
sent. We have proceeded to incorporate the boundary condition into carte—
sian problems which involve no symmetry, and into axis—-symmetry cylindrical

problems that may have left-right symmetry, antisymmetry or no symmetry.

* This work was supported by the Director, Office of Energy Research, Office
of High Energy and Nuclear Physics, High Energy Physics Division, U.S.
Dept. of Energy, under Contract No. DE-AC03-76SF00098.



Analysis

Consider the case where a cir-
cular arc of radius r =R -H di- universe.
vides space into two regions (Fig. 1),
an inner ane which includes all cur-
rent sources and magnetic iron, and
an outer one wnhich is in free space
(hereafter referred to as the "uni-
verse"”). Since the free space region
is infinite we shall arbitrarily li-—

mit it by a secondary circular arc

of radius r = R. Both circular arcs
are an assembly of connecting mesh Fig. 1

points such as the one generated by the program LATTICE. If we know the
vector potential for each mesh point on r =R —H (e.g. calculated by
POISSON), we would like to find the vector potential at each mesh point on
r =R, so that such values may be employed as provisional boundary values in

a subsequent relaxation pass through the entire mesh. This is expressed as:

Ainner' (1)

A is the vector potential and £ is a3 working matrix, and the summation
is over the entire mesh points of the inner arc.
In the free space region the vector potential can be expressed as a sum

of harmonic terms, each employing powers of 1/r.
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2=1
The vector potential A of mesh point i on the circular arc r is ex—
pressed in terms of a series of functions Fi (e), their coefficients Di and
the problem type symmetry a.
Summing over the N boundary points on the radius r, the difference be-

tween the calculated vector potential values and the relaxed ones is mini—

mized with respect to 02.
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The number of harmonic terms has been reduced to m_and the weight factors

Ni have. been introduced to take care of an uneven distribution of mesh

points along the boundary.

Following the minimization process we arrive at:

!. =
z: i Dj r V1 (4)
J=1
N
where: Mij “ By W Ff (ah) Fj (eh)

N
V. = Ei WoFL (o) A

Solving for Dj on the inner arc r =R —H we get

L el inner
Djaigl (R=H) ¥ (M )J.]. Vi (5)



Using Eg. (2) on the outer arc r = R and substituting the expressions

for Dj and Vi we arrive at

Employing the working matrix E,, relation (6) is rewritten as:

N
outer inner
: Ekn An (7)

K =
N=

A

where
Q.

=T LT ] e W lgg By ) Fyleg
j=1 ja=l R

Two Dimensional Case with Plane-Polar Coorgainates

The harmonic functions F£ (e) are a combination of the trigonometric

functions SIN and COS. It is, however, convenient to express them in the

following way
L4
Fz(e) = COS (cxi&--— 32. ?)

The explicit functions are listed in the table below.



2 a B, F (o) Function

. e
1 0 0 F1 1l a, =z integer division
1 1 Fo sin &
3 1 0 F3 cos o = _
B, =% — —3 integer
- 2 1 Fa sin 2e division
5 % 0 Fs cos 28
6 3 1 Fs sin 3e
3 0 Fr cos 3e
p-1 %l B Fol I g,
% ag 82 Fg‘ cos (aﬁ 9)
Examples

Regular dipole:
The terms used to describe the vector potential of a re—
gular dipole are:

Lwmdy Ty 1l senmuns ak-1; k =1, 2, 3, 4 ...

4k-1 . S
a, = —— integer division —- a = 2k -1

9 ___Eg;l_tl;—Z integer division —- 8, =0
Regular quadrupole: ¢ =5, 13, 21, ...... B—32 ¥ = 1; 2 35 & smuns
a, = 85_3 integer division — a = 4k -2
8k-3 _ 8k—4

B, = ——

L ] 4

integer division —- Bk 0



Midplane symmetry: 2 =1, 3, 5, ..... kels & = 1, & 35 & ases

2k-1 . P
a, = =—5— integer division — a, =k - 1
2k-1  2k-2 . o
BJL o g integer division —» Bk = 0
No-symmetry: £ =1, 2, 3, 4, ..... K. 4

k R
a, =7 integer division —= a = k -1

k k=1 . e -
By = -2——2—1nteger division —»= 8, =

0 K aly 35 8
1 k = 2, 4, 6

Ways of generating the ay have been outlined in report LBID-847 ("The
Vector Potential of Multiple Current Lines", S. Caspi, SSC-MAG-9, Febru-

ary 27, 1984) and are summarized in the table below.

Type | p I a ! 8 ! CON 126

' | ;
[ regular dipole ! 1 C2%=1 - 0 | 2
| i : '
! regular- quadrupole : 2 ; 4k=2 0 42
" regular sextupole | 3 | 6k=3 I 0 ! 83
: : .
s : IR
’ etc. p 2pk—p 0 | 2p-l0+*p
.2 in 1 dipole 2 i
with current [ i

2 in 1 quadrupole : symmetry o/ 2k=0 ' 0 20
: | | |
etc. i - |
!
.2 in 1 dipole ; i
! with current
2 in 1 quadrupole . antisymmetry 2k-1 0 21
! |
. etc. I
imidplane k-1 | o 11 and CON 46 # 1
! O % o= ly 3y § wes
i no symmetry k-1 l k=2, 4, & s
| CON 126 = 11
| CON 46 = 1
|




Figures 2, 3, and 4 are flux line plots which demonstrate the method
introduced here for the use of boundary conditions. All cases are
for Cartesian problems.

(a) Boundary at R = 16.0 (b) Boundary at R = 8.0
Source at 45 Source at 45°

(c) MNo symmetry in current source. (d) No symmetry in current
flow.

Fig. 2 Flux lines are plotted for cases where the use of no-—
symmetry 1in the boundary condition has been applied.
(CDN 46 = l, ok = ll) .
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ig.3

Flux lines for a single current linc
are such that all possible harmonics

dipale.

The boundary conditions

are allowed .

is preserved if the vector potential 2
cases result in the same field harmonics.

at (0,0) is set to O(case a).

The fine symmetry

gath



Fig. 4

Flux Tines leaking from the iron to the "universe" are plotted for
(@) 2-in-1 quadrupole a, = 2k - 1; (b) SSC 2-in-1 dipole with even
current loading,a, = 2k = 0; (c) SSC 2-in-1 dipole with uneyen load-
ing ay = k - 1. "Case a and b were solved in a single quadrant,

case ¢ solved midplane.



Axis-Symmetry Problems with Polar Coordinates

Here we consider cases which obey symmetry with respect to revolution

-

around the Z axis. The component A¢ of a vector potential A = A (r, &) Ed

in a spherical coordinate system may employ terms of the form

% & 1 1 1
r Prl (u) and —_:F:f_' Pn (u)

in addition, in principle, to terms of the form §-+ b

Pi (u) are the associated Legendre functions.

(See for example "Mathematical Methods for Physicists”, G. Arfken,

pp. 558-567).

Here r = (p2 +'z?)l/2, = r sine, zZ = r cose, and u = cos e with e

denoting the angle from the pole (co-latitude).

r

|
Y/l /{/////J

In a region (r > R) devoid of external sources we may expect that Aé

can be represented exclusively in terms of the form



We proceed to somewnat normalize the associated Legendre function. This can

sometimes improve the inversion of Mij and express the vector potential in

the following form

g 1
P
plrs ) = = g o Jo (o) @)

221 % 3

We recognize the fact that our normalization factor g is different from the

+—
conventional one 2(2+ 1

2.""'?
In a cylindrical geometry the flux lines are represented by the product
p.Ad where Aﬁ is the vector potential. The program POISSON is written
in such a way that this product is the one which is being relaxed. We

therefore proceed and redefine:

-
Aé =po A?5 - p = rsin e
Equation 8 is now written as:
' Pl
= = . sin e- P, (cos e)
Ad = g ¥ 9 : (9)
2=1 '
We define:
; 1
sin 9-Pu (cos e)
9,
Fo = 0 ;g =g <l <cosecl

Such Legendre associated functions may serve to describe a magnetic vector-
potential function in certain cases of cylindrical symmetry. We write down

the explicit form of Fﬁ in the following table:



2 a F Function
1 1 £l sin o Pll(cos e)
2 2 Fo sin o le(cos 8)
2
3 3 Fs3 sin s-P3l(cos 8)
3
F sin e PL (cos e
% % ) : e L )

Symmetry with respect to eguatorial plane: ¢ =1, 3, 5 .. 2k-1 ; k=1, 2, 3 ...

We note that if A¢ is even 3bout & = =/2 (current symmetry), only odd va—

lues of £ are required.

ap =L *t1l — g =%-1 k=1,2,3...

|




Antisymmetry with respect to equatorial plane: 2 = 2, 4,

If A¢

are required.

No symmetry:

G = (0 =i g

= 2k

4%

D ...

(b)

Ewly Zyos

= 2k
ee ko —

%y

is odd about e = =w/2 (current antisymmetry), only even values of £



We summarize the reﬁults for POISSON in the following table (CON 126 is

one of the PQISSON constants).

Type a CON 126 CON 46
(CON 19=1)
Symmetry 2k-1 21 1 for 2 quadrants
Antisymmetry 2k 20 2 for 1 quandrant
No-Symmetry 13 10 or midplane

Recursion Relation

The computations of the Legendre functions are based aon the recursion

relation
PL (u) ' Pé_i“) pr {u)
(l-*l)f. 7 = (29.--1)(2-].) u -—P._:T —i(ﬂ'—-Z)ﬁ.—

For those cases wnich require only odd or sven terms we have a related recursion
relation that relates Legendre functions whose degrees (subscripts) differ by

two units (rather than by one unit, as above).

i
Pz (u) _
2
1 ' .1
Py »lu) Py ,(u)
[(29.-5)(21-3)(21-1)142 ~ (427 ~ 185+ 201 - 3)](1-2)[ 2o —{— (2-1) (2-1) (2-2) (2-4) [_-f'—:“-a-:l

(20.-5) (2-1) (2=2)2

We have prepared a subroutine SALFN (together with an attacned program ASSOL,

for testing this subroutine) intended to provide values of



More on Symmetries

In the course of developing some general rules for the values of the
harmonic terms a, we realized that in some cases the leading term in the
vector potential series decays radially with a high power. (Again, we are
only concerned with the potential in the region outside all sources). These
cases involve problems with a large number of poles and a geometry that obey
internal symmetry. The program POISSON, written to accommodate the present
type of boundary condition, assumes however that pseudo terms do exist prior
to the leading term and should drop out as the problem continues to relax.
Since this type of problem presently is of only academic interest, we have
included such terms here without addressing them in the POISSON code itself.

We use the mathematical argument that the derivative of one multipole
leads to the next higher multipole (e.g. in two dimensional space dipoles

are second rank tensors).

Cartesian Coordinates

For this example we choose to expand the vector potential Az in the x

direction only (AZ is "symmetrical" in the sense that only COS terms are

emp loyed )

1
AZ - = cas (ake)
=
3A
by P L _— L_?’_)
T (cos e’ar sin 9—r = AZ
BAZ ak
=~ T o cos [ay ~ 1el
- k
32Az uk(a.k*'l) [ ]
= cos [(a, * 2)e etc £
- ak‘" 2 k



[f we apply the rule to a single dipole ay = 2k - 1 we get

|

l l
— &3 —E+a } —E——E—
| i ]
antisymmetry symmetry
:2-&71-&15 [(2k-1)e] r—ércos (2ke)
%_-cos T ?I-CDS 20, .o

R S R S
— b —F——F—{——f——F+——
I 1 |
antisymmetry

—3%:T'C°5 [(2k+1l)e]
.

-lgcos 30y wiws

r

Finite-=difference illustrations only

We note that the leading term in case (c) decays with the third power where—
as the one in case (a) decays with the first one. However running case (c)
on POISSON the first term would have been of the same order as in case (a)
assuming, though, that as the problem continues to relax the coefficient for
(1/r) will continue to decline letting the term (11r3) become dominant.
The same process will be true running POISSON for cases with a larger number

of poles where the leading term takes the form of l/rn with n >> 1.



Polar Coordinates

We differentiate the vector potential Ad with respect to axial symme-—

try axis.
&, == 1 p ! (cos @)
¢ qk"‘ 1 ay
g
aA
¢ _ 3 19
——-az = (CDS G-a—'— | 9-£> ¢
- 3A a |
i N K P (cos o)
32 ™ 2 uk'"l
#
2
3 Ad uk(uk"’l) 1
- = P+ (cos o) etc.
az rék k

Applying the rule to a solenoid with ay =2k — 1 we can similarly de—
velop groups of them with high decay power in their leading terms.

To differentiate the associated legendre polynomials we make use of
Eq. (8.5.4) and (8.5.3) in the book of Abramowitz and Stegun (p. 334) to

obtain

X = CO0S @&



-+ . - + . .
—— —_— et — S L ' —_— ’
| 1 l
| |
i [
- ~Rr TR R~
symmetry antiswnnetry symmetry
1 1 1 1 1 1
3 Pok-1 (u) 2k+T Pog (u) 2T Pox+1 (U)
1 1 1 1 1 1
—-Z-*Pl 5 Eae ——j-PZ. 5 A _Z-P3’ P
r r | 08
Example

We have ca]culatéd the vector potential for a single current loop and
compared the results with those from POISSON.
We express the vector potential of a single current loop placed at

z=04and p =3 =1 as:

Ay =éﬁfa + )% + 22 [(1 +my) K —ZF_]

(a -0)2 +'Z2
(a *o)z + 2°

ml_

K, E are the elliptic integral of the first and second kind respectively.

For I = 1A we have solved for the vector potential using POISSON and

compared results for cases that use different boundary conditions. (Fig. 5).




The Vector Potential of a Single Loop

\ --Or= Theory :

—&5— Dirichlet -
—0—- Neumann i
[ This york !

Y*R

Fig. 5 The vector poteptjal, alopg r at z = 0, of a single current Joop carrying
1A subjected to varjous boundary copditions.



